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Abstract. In this paper we develop a general approach for investigating pattern
generation problems in multi-dimensional lattice models. Let S be a set of p symbols
or colors, Zy a fixed finite rectangular sublattice of Z%, d > 1 and N a d-tuple of
positive integers. Functions U : Z% — S and Uy : Zy — S are called a global
pattern and a local pattern on Zy, respectively. We introduce an ordering matrix
Xy for ¥, the set of all local patterns on Zy. For a larger finite lattice Z g,
N > N, we derive a recursion formula to obtain the ordering matrix X 5 of ¥ 5 from
X . For a given basic admissible local patterns set B C X, the transition matrix
TN (B) is defined. For each N > N denote by % 5 (B) the set of all local patterns
which can be generated from B. The cardinal number of ¥ 5 (B) is the sum of entries
of the transition matrix T g5 (B) which can be obtained from T y (B) recursively. The
spatial entropy h(B) can be obtained by computing the maximum eigenvalues of
a sequence of transition matrices Ty (B). The results can be applied to study the
set of global stationary solutions in various Lattice Dynamical Systems and Cellular
Neural Networks.

1. Introduction. Many systems have been studied as models for spatial pattern
formation in biology, chemistry, engineering and physics. Lattices play important
roles in modeling underlying spatial structures. Notable examples include models
arising from biology[7, 8, 21, 22, 23, 33, 34, 35|, chemical reaction and phase tran-
sitions [4, 5, 11, 12, 13, 14, 24, 41, 43], image processing and pattern recognition
[11, 12, 15, 16, 17, 18, 19, 25, 40], as well as materials science[9, 20, 26]. Stationary
patterns play a critical role in investigating of the long time behavior of related dy-
namical systems. In general, multiple stationary patterns may induce complicated
phenomena of such systems.

In Lattice Dynamical Systems(LDS), especially Cellular Neural Networks (CNN),
the set of global stationary solutions (global patterns) has received considerable at-
tention in recent years (e.g.[1, 2, 6, 10, 27, 28, 29, 30, 31, 32, 36, 37]). When the
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mutual interaction between states of a system is local, the state at each lattice point
is influenced only by its finitely many neighborhood states. The admissible (or al-
lowable ) local patterns are introduced and defined on a certain finite lattice. The
admissible global patterns on the entire lattice space are then glued together from
those admissible local patterns. More precisely, let S be a finite set of p elements
(symbols, colors or letters of an alphabet). Where Z? denotes the integer lattice
on R?, and d > 1 is a positive integer representing the lattice dimension. Then,
function U : Z¢ — S is called a global pattern. For each o € Z%, we write U(a) as
tq. The set of all patterns U : Z¢ — S is denoted by

d _ oz°
Ep:S ,

ie., Zg is the set of all patterns with p different colors in d-dimensional lattice. As
for local patterns, i.e., functions defined on (finite) sublattices, for a given d-tuple
N = (N1, Na, -+, Ny) of positive integers, let

ZN:{(al7a27“' aad)lgakSNkvlngd}

be an N7 x Ny X - -+ Ny finite rectangular lattice. Denoted by N > N if ﬁk > Ny,
for all 1 < k < d. The set of all local patterns defined on Zy is denoted by

In=%2n,={Ulzy :UE€ Eg}.

Under many circumstances, only a(proper) subset B of ¥ is admissible (allowable
or feasible). In this case, local patterns in B are called basic patterns and B is
called the basic set. In a one dimensional case, S consists of letters of an alphabet,
and B is also called a set of allowable words of length N.

Consider a fixed finite lattice Z and a given basic set B C Xy. For larger finite
lattice Z ¢ O Zy, the set of all local patterns on Z g which can be generated by B
is denoted as ¥ ¢(B). Indeed, X ¢(B) can be characterized by

YeB) ={ UcXg:Usyn=Vy forany ac Z with Zgyn C Zg
and some Vy € B},

where
a+N={(a1+ b1, ,aq+Ba) : (b1, ,B4) € N},
and
UatnN = VN means ua4p = vg for each B € Zy.
Similarly, the set of all global patterns which can be generated by B is denoted by
X(B)={U ¢ Eg :Ungqen = Vn for any a € Z¢ with some Vy € B}.

The following questions arise :

(1) Can we find a systematic means of constructing X ¢(B) from B for
Zﬁ D ZN?
(2) What is the complexity (or spatial entropy) of {} ¢(B)}e-y ?

The spatial entropy h(B) of X(B) is defined as follows :
Let

I'e(B) = card(Xg(B)), (1.1)
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the number of distinct patterns in X ¢(B). The spatial entropy h(B) is defined as

1
(5) = Jim ——loxTg (8 (1.2

where N = (ZT]I, N;, e J/\Td) be a d-tuple positive integers, which is well-defined and
exists (e.g. [13]). The spatial entropy, which is an analogue to topological entropy
in dynamical system, has been used to measure a kind of complexity in LDS (e.g.
[13], [42] ).

In a one dimensional case, the above two questions can be answered by using
transition matrix. Indeed, for a given basic set B, we can associate the transition
matrix T(B) to B. Then the spatial entropy h(B) = log A, where A is the largest
eigenvalue of T(B) (e.g. [29, 41]). On the other hand, for higher dimensional cases,
constructing ¥ g (B) systematically and computing I' ¢ (B) effectively for a large N
are extremely difficult.

In the two dimensional case, Chow et al. [13] estimated lower bounds of the
spatial entropy for some problems in LDS. Later, using a ” building block” technique,
Juang and Lin [29] studied the patterns generation and obtained lower bounds of the
spatial entropy for CNN with square-cross or diagonal-cross templates. For CNN
with general templates, Hsu et al [27] investigated the generation of admissible
local patterns and obtained the basic set for any parameter, i.e., the first step in
studying the patterns generation problem. Meanwhile, given a set of symbols S
and a pair consisting of a horizontal transition matrix H and a vertical transition
matrix V, Juang et al [30] defined m-th order transition matrices Tg@ and T;Im&

for each m > 1 and, in doing so, obtained the recursion formulas for both TI({m&

and T](;n& Furthermore, they proved that TI({m& and TI({m& have the same maximum

log A
m

eigenvalue \,, and spatial entropy h(H,V) = lim . For a certain class of

m—00
H,V, the recursion formulas for TI({m& and T ;Im‘} yield recursion formulas for A,
explicitly and the exact entropy. On the other hand, for the patterns generation

problem Lin and Yang [37] worked on the 3-cell L-shaped lattice, i.e., N= H] They
developed an algorithm to investigate how patterns are generated on larger lattices
from smaller one. Their algorithm treated all patterns in ¥ ¢(B) as entries and
arranged them in a ”counting matrix” Mg (B). A good arrangement of M ¢(B)

implies an easier extension to Mg (B) for a larger lattice N O N and effective
counting of the number of elements in ¥ ¢(B). Upper and lower bounds of spatial
entropy were also obtained. Next, there are some relations with matrix shift [13],
that details will appear in section 3.4.

Motivated by the counting matrix My (B) of [37] and the recursion formulas
for transition matrices in [30], this work introduces the ”ordering matrix” Xy for
Yorxoe to study the patterns generation and obtain recursion formulas for X,, for
Yorxne where ¢ > 1 is a fixed positive integer and n > 2. The recursion formulas
for X,, imply the recursion formula for the associated transition matrices T, (B) of
Yoexne(B), i.e., a generalization of the recursion formulas in [30]. Notably, a dif-
ferent ordering matrix 5(2 for Yosxor induces different recursion formulas of in for
Yorxne and 'i‘vn(B) Among them, X5 defined in (2.9) yields a simple recursion for-
mula (3.16) and rewriting rule (3.14), which enabling us to compute the maximum
eigenvalue of T, effectively. The computations or estimates of A,, are interesting
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problems in linear algebra and numerical linear algebra. Owing to the similarity
property of (3.16) or (3.14) of transition matrices {Ty,}52,, we show that for a cer-
tain class of B, A, satisfies certain recursion relations and h(B) can be computed
explicitly.

In d > 3, the structure of ordering matrix and transition matrices has been
explored, and it can be found in [3].

The rest of this paper is organized as follows. Section 2 describes a two dimen-
sional case by thoroughly investigating Y45 and introducing the ordering matrix
X5 of patterns in ¥oxo. The ordering matrix X,, on Yoy, is then constructed from
Xy recursively. Finally, section 3 derives higher order transition matrices T,, from
T2 and computes A, explicitly for a certain type of Ts.

2. Two Dimensional Patterns. This section describes two dimensional patterns
generation. For clarity, we begin by the studying two symbols, i.e., S = {0,1}. On
a fixed finite lattice Z,, xm,, we first give a ordering X = Xm xms O Zimy xmy DY

x((a1,a2)) =ma(ar — 1) + ag (2.1)
ie.,
ma 2my mimsy
: : : : (2.2)
1 mo +1 (mqp —1)mg + 1

The ordering x of (2.1) on Z,, xm, can now be passed to X, xm, - Indeed, for
each U = (U ,as) € Ly xms,, define

X(U) = Xmixms (U)

my mo (2.3)
14+ Z E ua1a22m2("ll—al)+(m2—0¢2).

a1=1as=1

Obviously, there is an one-to-one correspondence between local patterns in ¥,,, xm,
and positive integers in the set Nomim, = {k € N : 1 < k < 2™1™2} where N is the
set of positive integers. Therefore, U is referred to herein as the x(U)-th element in
Yy xms- By identifying the pictorial patterns by numbers x(U), it becomes highly
effective in proving theorems since computations can now be performed on x(U).
In a two dimensional case, we will keep the ordering (2.1)~ (2.3) x on Z,, xm, and
Y, xmy, Tespectively.

2.1. Ordering Matrices. For 1 x n pattern U = (ug),1 < k < nin Xj4,, as in
(2.3), U is assigned the number

i=x(U) =1+ w2, (2.4)
k=1
As denoted by the 1 x n column pattern .,
Up, Up,
Tpyi = | ° or Dl (2.5)
Uy U

In particular, when n = 2, as denoted by x; = x4,

=14 2u; + us
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and

xT; = { 42 ] or 21 (2.6)
Ul Ul

A 2 x 2 pattern U = (uq,a0,) can now be obtained by a horizontal direct sum of
two 1 X 2 patterns, i.e.,

ziﬂz = £L'i1 (%) LL‘Z‘2
(2.7)
U1y U2 U12 | U22
or s
[ Uil U21 } Uil | U21
where
ir =1+ 2ug +uge, 1<k<2 (2.8)

Therefore, the complete set of all 16(= 22X2) 2 X 2 patterns in Yoxo can be listed
by a 4 x 4 matrix X = [2;,;,] with 2 X 2 pattern z;,;, as its entries in

o [ G 0

[o] | [ofo] [ofo] [of1] [o]1]
[1]0]
[o] | [ofo] [ofo] [of2] [o]1] (2.9)
z
[1[o]  [1]o]
[1]0]
[1[o]  [1]o]
It is easy to verify that
X(xhiz) = 4(21 - 1) + i, (210)

i.e, we are counting local patterns in Yoxo by going through each row successively
in Table (2.9). Correspondingly, Xs can be referred to as an ordering matrix for
Yox2. Similarly, a 2 x 2 pattern can also be viewed as a vertical direct sum of two
2 x 1 patterns, i.e,

Yjrjs = Yir B Yja> (2.11)
where
Y = uu ux | or ,
and

Ji =1+ 2uy + uy, (2.12)
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1 <1<2. A4x4matrix Yo = [y;,,,] can also be obtained for Xoyo. i.e., we have

=
=

[1]1]

[o] [=[o] [o]o] [e]]
=] [e]=] [P[e] [o]]

=
=]
=[]
[=[o]
=
=]

(2.13)

=]
o] iil

=

] [ol] [ol]
ol [l [old]
=] [el

= el

=
=

The relation between X and Yy must be explored. Indeed, from (2.12), ug; can
be solved in terms of jj, i.e., we have

i — 1
uy = 2= (2.14)
2
and
. -1
wa = ji—1- 24—, (2.15)
where [ ] is the Gauss symbol, i.e., [r] is the largest integer which is equal to or

less than r. From (2.8), (2.12), (2.14) and (2.15), we have the following relations
between indices 41,15 and ji, ja.

2 .
) 1 —1 _
=1+ [kT] 22k, (2.16)
k=1
2 .
1 gy g2k 2.17
p=14Y Lie—1-2 (B )y 2k, (217)
k=1
and
2 .
. Ji—1, oy
z1_1+Z[T]2 , (2.18)
=1
2 .
=1 1ol g2 2.19
=14 Y (122t (219)
=1

From (2.16) and (2.17), (2.9) or X5 can also be represented by y;, ;, as

Y11 Y12 Y21 Y22

X, = Y13 Y14 Y23 Y24 . (2.20)
Y31 Y32 Ya1 Y42
Y3z Y34 Ya3  Yaa

In (2.20), the indices j1j2 are arranged by two Z-maps successively, as

1 — 2

/ (2.21)
3 — 4
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i.e., the path from 1 to 4 in (2.21) is Z shaped and is then called a Z-map. More
precisely, X5 can be decomposed by

Yo, Yoo
Xy = ’ ’ 2.22
’ { You Yau } (2.22)
and
Y1 Yk2
Yo = . 2.23
2k { Yk3  Yk4 ] ( )

Where, Xy is arranged by a Z-map (Ya.;) in (2.22) and each Ya, is also arranged
by a Z-map (yg) in (2.23). Therefore, the indices of y in (2.20) consist of two
Z-maps.

The expression (2.20) of all local patterns in Yoy by y can be extended to all
patterns in Y5y, for any n > 3. Indeed, a local pattern U in Yoy, can be viewed
as the horizontal direct sum of two 1 x n local patterns, i.e., U; and U;, and also
the vertical direct sums of n many 2 x 1 local patterns. As in (2.9), all patterns in
Yoxn can be arranged by the ordering matrix

Xy = [ Tnsivis | (2.24)
a 2™ x 2" matrix with entry ,.4,i, = Tnii;, B Tnuy, Where x(Uy) =41 and x(Us) = i
as in (2.4) and (2.5), 1 < 41,72 < 2". On the other hand, for two 2 x 2 patterns
Yjrjo and yj,;,, we can attach them together to become a 2 x 3 pattern y;, 5,5, , since
the second row in y;, ;, and the first row of y;,,, are identical, i.e.,
Yjrjejs =  Yjije o Yjois
(2.25)
= Ui DY, DYy,
Herein, a wedge direct sum & is used for 2 x 2 patterns whenever they can be
attached together. In this way, a 2 x n pattern yj;,...;, is obtained from n — 1 many
2 x 2 patterns ¥, o, Yjojss " s Yjn_1jn DY

Yjogn = Yirja © Yjags © D Yju_rjn
(2.26)
= Y DY, @ DYy,
where 1 < jix <4, and 1 < k < n. Now, X, in y expression can be obtained as
follows.

Theorem 2.1. For anyn > 2, Yoxpn = {Yj,...;. }, where y;,...;, is given in (2.26).
Furthermore, the ordering matriz X, can be decomposed by n Z-maps successively
as

_ Yn;l Yn;2
X, = { Yoy Yo } , (2.27)
Yn_ = g1k 31k , 2.98
R |:Y"§j1"'jk3 Yn;j1~~~jk.4] (228)

for1<k<n-—2, and

Yj1-gn-1l  Yj1-jn-12
Y.. _ J1In—1 Ji1In—1 :| 229
T {yjlmjnl?) Yjr-jn—14 22

Proof. From (2.12), (2.14) and (2.15), we have following table.
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Ji 1 2 3 4
U1y 0 0 1 1
U] 0 1 0 1

Table 2.1

For any n > 2, by (2.12),(2.14) and (2.15), it is easy to generalize (2.18) and (2.19)
to

i =1+ Z 2” L (2.30)
and
zn2_1+Z{gl—1—2[ ]}2” L (2.31)

From (2.30) and (2.31), we have

-1
4131 = 2 — 14 []%], (2.32)
and
. . . jn+1 -1
In41;2 = QZn;Q -1 -+ {]n+1 -1 2[T}} (233)
Now, by induction on n the theorem follows from last two formulas and the table
2.1. The proof is complete. [ |

Remark 2.2. The ordering matriz on X, x, can also be introduced accordingly.
However, when spatial entropy h(B) of ¥(B) is computed, only A\, the largest eigen-
value of T, (B) must be known. Section 3 provides further details.

2.2. More Symbols on Larger Lattices. The idea introduced in the last section
can be generalized to more symbols on Z,, ., where m > 3. We first treat a case
when m is even. Indeed, assume that m = 2¢, ¢ > 2 and S contains p elements.
Now, we introduce the ordering matrices Xo = [2;,:,] and Yo = [y;,,] t0 Larxae

as follows. Let ¢ = pzz, X3 can be expressed by y;, j,, i.e.,

Y; Y, Y,
X, = Yq.Jrl Yq.+2 : Y.2q 7 (2'34)
Yig-1g+1 Yig-1g+2 -+ Yo axq
with
Yji,1 0 Yiig
Y, = yjh:q"rl yjlz,gq . (2.35)

Yjr(g—1)g+1 " Yj1,¢2 gxq
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Now, we can state recursion formulas for higher ordering matrix X,, = [Zn;i14,]qn xqn
as follows and omit the proof for brevity.

Theorem 2.3. Suppose we have p symbols, p > 2 and let ¢ = p£2, > 2. For any
n =2, Yooxne = {Yjijo-jntr WhETE Yjijojy = YjrjaOYjajs® -+ BYj_1jr 1 < Gk <
¢? and 1 < k < n. Furthermore, the ordering matriz X,, can be decomposed by n
Z-maps successively as

Yn;l Yn;Q Tt Yn;q
Yn;q-H Yn;q+2 T Yn;Qq
X, = , , , , (2.36)
Yn;(qfl)qul Yn;(qfl)q+2 T Yn;q2
Yoijige =
Yoijn e gl Yoiin,ee den2 o Yo kg (2.37)
Yoijn, e ka+l Yo, gma+2 0 Yo n2g :
Yoijnde(a=1a+1  Yogjy,e i, (a—1)g+2 Yoijn e inoa?
for1<k<n-2,
Yoijicgo1 =
Yji,e dn-1,1 Yji,e dn—1,2 Yjr dn—1,a (2 38)
Yjr, o gn-1,0+1 Yirs Gn—1,9+2 U Y dn—1,2q :
Yjidn-1.(g=Dg+1  Yji, gn_1,(a=Dg+2 " Yjr, gno1,4?

3. Transition matrices. This section derives the transition matrices T, for a
given basic set B. For simplicity, the study of two symbols S = {0,1} on 2 x 2
lattice Zayo in two dimensional lattice space Z? is of particular focus. The results
can be extended to general cases.

3.1. 2x 2 systems. Given a basic set B C Y22, horizontal and vertical transition
matrices Ho and V5 can be defined by
Hy, = [hiliz] and Vo = [Ujle] (31)

, two 4 x 4 matrices with entries either 0 or 1 , according to following rules:

hi1i2 = 1 Zf Tiis € B,
{ = 0 if @i, €Noxa — B, (32)

and

Vi, =1 if Yjrjs € B, 3.3
{ =0 Zf Yjvja € Yoo — B. ( ’ )
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Obviously, hi, s, = vj, j,, where (i1, 42) and (j1, j2) are related according to (2.16)~(2.19).
Now, the transition matrix Ty for B can be defined by

T2 = T2 (B)

Vi1 Uiz V21 V22 (3.4)
V13 V14 V23 V24
V31 V32 V41 V42
V33 V34 V43 Ugy

Define

Ujrjo-jn = Yjije * Vjajs =" Ujn_1jn> (3'5)

and

Ty = [Vjs4o-jn s

then the transition matrix T,, for B defined on Zsy, is a 2™ x 2" matrix with
entries vj, ..., , which are either 1 or 0, by substituting y;,...;, by vj,...5, in X,,, see
(2.27)~(2.29).

In the following, we give some interpretations for T,,, one from an algebraic
perspective and the other from Lindenmayer system (for details see Remark 3.2 ).
For clarity, T3 can be written in a complete form as

V11011 V11V12 V12021 Vi12V22 V21VU11  V21V12 U22V21  V22V22
V11013 V11V14 V12023 V12V24 V21V13 V21V14 U22V23 V22V24
V13V31  V13VU32 V14V41 Vi4U42 U23V31  V23VU32  U24V41  V24U42
V13V33 V13U34 V14V43 V14U44 U23V33  V23VU34 U24V43  V24U44 (36)
U31V11  U31V12 U32V21 U32V22 U41V11  UV41V12 V42V21  U4g2U22
U31V13 U31V14 U32V23 VU32VU24 U41V13  V41V14 V42023 V42U24
U33V31 U33U32 U34V41 U34U42 U43U31 V43U32  UV44U41  V44U42
V33V33 U33U34 U34V43 U34U4q4 UV43V33 V43U34 UV44V43  V4qU44

From an algebraic perspective, T3 can be defined through the classical Kronecker
product (or tensor product) ® and Hadamard product ®. Indeed, for any two
matrices A = (a;;) and B = (by;), the Kronecker product of A ® B is defined by

On the other hand, for any two n X n matrices
C= (Cij) and D = (dij),

where ¢;; and d;; are numbers or matrices. Then, Hadamard product of C' ® D is
defined by

C©D = (cij - dij), (3.8)

where the product c;; - d;; of ¢;; and d;; may be multiplication of numbers, numbers
and matrices or matrices whenever it is well-defined. For instance, ¢;; is number
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and d;; is matrix.

Denoted by
AL
Ty = |: T, T, ] , (3.9)
where T}, is a 2 X 2 matrix with
Vg1 Vg2
T, = . 3.10
i [ Uk3  Uk4 } ( )
Then, using Hadamard product, (3.6) can be written as
Vi1 V12 V21 V22 T Ty T 1o
V13 V14 V23 V24 I3 Ty 13 Ty
Ty — © , 3.11
3 V31 U3z U4l V42 T To Ty Ty (3.11)
U33 U4 V43 Vaa T3 Ty T3 Ty

and can also be written by Kronecker product with Hadamard product as

w1 [ E]) e

where (T2)4x4 is interpreted as a 4 x4 matrix given as in (3.4). Hereinafter, (M )gxk
is used as the k£ x k matrix; its entries may also be matrices.
Furthermore, by (3.9) and (3.12), T3 can also be written as

T,0Ty Tho0Ts }

Ty = [ T30Ty Ty®Ty

(3.13)
Now, from the perspective of Lindenmayer system, (3.13) can be interpreted as a
rewriting rule as follows:

To construct T3 from Ts, simply replace T} in (3.9) by T} ® Ta, i.e,

vt T vp2Te ]

3.14
vi3T3  vgpaTy (3.14)

Tk’_>Tk®T2:|:

Now, T3 can be written as

vi1T1 w1y v Ty varTh
v13T3 04Ty va3T3  v4Ty
T3 = . 3.15
3 v31Th w3dy wvyTh wvals ( )

v33T3  w3aTy a3l wvaaTy

Since v, is either 0 or 1. The entries of T3 in (3.15) are T}, i.e, T} can be taken as
the ”basic element” in constructing T,, ,n > 3. As demonstrated later that(3.14)
is an efficient means of constructing T, 11 from T, for any n > 2.

Now, by induction on n, the following properties of transition matrix T,, on
Zs ., can be easily proven.

Theorem 3.1. Let Ty be a transition matriz given by (3.4). Then, for higher order
transition matrices T, n > 3, we have the following three equivalent expressions
(I) T,, can be decomposed into n successive 2 X 2matrices (or n-successive Z-maps)

as follows:
_ Tn;l Tn;2
Tn N |: El;3 Tn;4 ’



12 JUNG-CHAO BAN AND SONG-SUN LIN

7| T Togjaegie
gk T ’
’ Tosjrgns Thgjrjna

for1<k<n-—2and
T o | Vil Vjiejaa2
mijiegn-1 = | v .
Jin=13  Vji-jn_14
Furthermore,

Tn'k -

)

|: Ulen—l;l kaTn—1§2 :| (3 16)

kaTnfl;B ka4Tn71;4
(II) Starting from

(T T
T2_(T3 T4>7

Vel Vk2
Tk: = )
Vg3  Uk4

T,, can be obtained from T,_1 by replacing Ty by T © Ty according to (3.14).

with

(117)

T T
T’I’L = (Tn71)2"71><2"71 O] ( EQ"‘*Q & ( T:lg Ti ) ) )

where Eqr is the 28 x 28 matriz with 1 as its entries.

Proof.

(I)The proof is simply replaced Yy,.j,...;, and yj,...j. by Tnsjyojp and vj,...5, in
Theorem 2.1, respectively.

(IT) follow from (I) directly.

(I1I) follow from (I), we have

_ Tn;l Tn;2
Tn N |: Tn;S Tn'4 :| '

And by (3.16), we get following formula.

UllTn;l leTn;Z /UZITn;l ’022Tn;2
v13Thns V14Tna  v23Ths  vouTha

T =
" V31101 v32Th2 va1Tna  va2Th2
33103 V34Tn4 va3Thn3 VaaTha
= (T ) 1 1 ® E 2 ® I Tp
n—1)2n—1x2n— 2n— T3 T4 .
The proof is complete. [

Remark 3.2. While studying the growth processes of plants, Lindenmayer, e.g.[39],
derived a developmental algorithm, i.e., a set of rules which describes plant de-
velopment in time. Thereafter, a system with a set of rewriting rules was called
Lindenmayer system or L-system. From Theorem 3.1(IIl), the family of transi-
tion matrices {Ty}n>2 s a two-dimensional L-system with a rewriting rule(3.16).
Similar to many L-systems, our system T,, also enjoys the simplicity of recursion
formulas and self-similarity.



PATTERNS GENERATION AND TRANSITION MATRICES 13

As for spatial entropy h(B), we have the following theorem.

Theorem 3.3. Given a basic set B C Yaxa, let A, be the largest eigenvalue of the
associated transition matriz T, which is defined in Theorem 3.1. Then,

B(B) = lim 10820 (3.17)

n— 00 n

Proof. By the same arguments as in [13], the limit (1.2) is well-defined and exists.
From the construction of T,,, we observe that for m > 2,

men(B) = Z (Tznil)l}j
tsnys2 (3.18)
= #(Tp ).
As in a one dimensional case, we have
1 Tmfl
lim 28 THT)
m—o00 m
e.g. [42]. Therefore,
logT’
hB) = lim 08Tmxn(B)
m,n— oo mn
1 logT'
= lim —( lim 08 2 mxniB) an(B))
n—oo 1N m-—oo m
. log )\,
= lim .
n—oo n
The proof is complete. [ ]

3.2. Computation of Maximum Eigenvalues and Spatial Entropy. Given
a transition matrix Ty, for any n > 2, the characteristic polynomials |T,, — A| are of
degree 2". In general, computing or estimating the largest eigenvalue A, = A,,(T2)
of [T, — A| for a large n is relatively difficult. However, in this section, we present
a class of T in which A, (T3) can be computed explicitly. Indeed, assume that To

has the form of { g i } in (3.9), i.e.,
. . o a as
ﬂﬂA{% a}, (3.19)
and
To=T3=B= b by , (3.20)
bs b

where a, as, as, b, by and bz are either 0 or 1.
We need the following lemma.

Lemma 3.4. Let A and B be non-negative and non-zero m X m matrices, respec-
A aB ]

BB A

tively, and o and (B are positive numbers. The mazimum eigenvalue of {

is then the maximum eigenvalue of

A+ +/aBB.
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Proof. Consider
A-X aB | 0
BB A-X|

For |A — A| # 0, the last equation is equivalent to

A=\ B
' 0 (A=A —aBB(A-\"'B ‘ =0,
or
I —aB((A—X)"'B)?| =o.
Then, we have

[A++vaBB—=A=0 or |A—+/aBB -\ =0.
Since A and B are non-negative and « and (3 are positive, verifying that the maxi-
A aB
8B A

proof is complete. [

mum eigenvalue A of [ } and A+ +/afB are equal is relatively easy. The

Now, we can state our computation results for A\, (T2) when T satisfies (3.19)
and (3.20).

A B
B A

a

Theorem 3.5. Assume that Ty = [ a
3

}andA:{ C;Q}ande

[ bl; bbz } where a,b,az, a3, bz, b3 € {0,1}. Forn > 2, let \,, be the largest eigen-
value of
T, — Al =0.
Then
An = p_1 + Bn-1, (3.21)
where oy and By satisfy the following recursion relations:
041 = aoy + b, (3.22)
Ber = V(azak + bafB)(asay + bsfy), (3:23)
for k>0, and
ag = fo = 1. (3.24)

Furthermore, the spatial entropy h(Ts2) is equal to log&., where &, is the maximum
root of the following polynomials Q(§):
(I) ifa2 = asz = 1,

Q)= A(€—a)’+(v* —49)(§ —a)?

—72€% — 279(2b — av)€ — (2b — ay)?,

(3.25)

where
v = by + bs and § = babs. (3.26)
(IT) if azaz =0 and azbs + azbs = 1,
Q&) =& —at? — 66 +ad —b. (3.27)
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Moreover, if asaz = 0 and agbs + azby = 0, then h(T3) = 0.

Proof. Owing to the special structure of T, it is easy to verify that for any k > 2,
we have

A, B
Ty = { B: A],: ] ;
and
Tysr = [ Apy1 Br ] ,
Bry1 Agsa
here
A1 =T 0 A= { ;3‘2’; ‘szk’“ ] , (3.28)
and
Byi1 =Ty, ®B = [ bi‘g“k b;i’“ } : (3.29)
Ay = A and By = B. Now by Lemma 3.4,
|Tn+1 - /\n+1| =0,
implies
|Ans1+ Bry1 — Ang1] =0. (3.30)
Let

ag=1 and Gy=1.

By induction on k, 1 < k < n, and using (3.28),(3.29),(3.30) and Lemma 3.4, it is
straight forward to derive

|tk An— i1 + BeBrii1 — Ang1] =0, (3.31)

with oy and G, satisfy (3.22) and (3.23). In particular,
Qn, = ao,_1+b6,_1, (3.32)
Bn = {(azon_1 4 baBp_1)(azom_1 + b3Bp_1)}2, (3.33)

and

/\n+1 =ap+ ﬁn

This proves the first part of the theorem.
The remainder of the proof, demonstrates that h(Ts2) = log A, where A, is the
maximum root of Q(A). From (3.33), we have

B2 =asaza?_; + (a2bs + azba)an—18n-1
(3.34)
+ babsB2_;.

Now, in (3.34), we first solve a;,—1 in terms of 3,,—1 and 3,, then substitute a;,_1
and «, into (3.32) to obtain difference equations involving fB,4+1, G, and Bn_1.
There are two cases:

Case I. If ap = a3z = 1, then we have

Gt = {1 + (492 + (0 — 408, (3.35)
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Substituting (3.35) into (3.32), yields

{4821+ (1 —40)82}2 = 4B, + (2b— a)Bu1
(3.36)
+ a{4B2 + (v —40)32_ )3,
Now, let
B
gn_ﬂnq’ (3.37)

and after dividing (3.36) by 5,—_1, we have
E{4E2 1 + (V2 —40)}2 =76, + (20— av) + a{4€2 + (v* — 40)}5.  (3.38)

(3.38) can be written as the following iteration map:

§n+1 = G1(&n), (3.39)
where
G1(€) = 545+ 299(6) + (O}, (3.40)
and
9(€) = (2b— ay)E ™ + af{d+ (* — 46)E 725 (3.41)

We first observe the fixed point &, of G1(€), i.e., & = G(&4), is a root of Q(E).
Indeed, by letting &, = &,+1 = &« in (3.38), we have

(6 = @)(4€2 + (7 — 49))% = 76, + (2b — a7),
which gives us Q(&:) = 0.
It can be proven that the maximum fixed point of G1(£) or the maximum root
&« of Q(&) = 0 satisfies 1 < &, <2 and
&n — & as n — oo, (3.42)
Details are omitted here for brevity. By (3.21), (3.35) and (3.37), we can also prove
that

>\n+l
An

— & as n— oo, (3.43)
Hence, h(T2) = logé..

Case II. If acas = 0 and asbs + azby =1,
then, from (3.33), we have

n—1 = BB, — 6Bn-1. (3.44)
Again, substituting (3.44) into (3.32) and letting (3.37) lead to
€216y — ak2 — 86, +ad — b =0, (3.45)
ie.,
Ent1 = G2(&n),
where

Go(€) = {a& + 0+ (b—ad)¢ ™1} 3. (3.46)

The maximum fixed point &, of (3.46) is the maximum root of Q(§) = 0 in (3.27).
It can also be proven that (3.42) and (3.43) holds in this case.
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Finally, if asas = 0 and asbs + azbs = 0, then 3, are all equal for n > 1. Hence,
v, is at most linear growth in n, implying that h(Ty) = 0. The proof is thus
complete. [ ]

For completeness, we list all To which satisfy (3.19) and (3.20) and have positive
entropy h(Ts). The table is arranged based on the magnitude of h(T3). The
polynomial Q(.) in either (3.25) or (3.27) has been simplified whenever possible.

A 5 Q|
o | o |
o | (11 (8l e
ool [D1[10] 1Y | e |
ool (1] [0t | e |
e | [] 5] ] a1 |
@ ot ] oo |
i 0]
o |[3e[08] [H1] | e |
ol 3 o] v e

(i) As = 1.75488, (ii) A, = 1.46557, (iii) A = 1.32472, (iv) A, = 1.22074
where, g = 1.61803, is the golden mean, a root of A> — A — 1 = 0.

Table 3.1

The recursion formulas for A,, are
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(1) A =27,

(2) A1 = An + (Andno1)?,

(3) (@) A1 =An+ M = An1))2,
(B) A1 =An + Ano1,

(7) )\nJrl =My + )\nflv

(4) /\n+1 = >\n + (/\n—l(>\n - ATL—l))%7
(5) )\nJrl = ()\nﬁn71>% +ﬁn71a
where ﬁn—l = )\n - )\n—l +o 4+ (_1)71,,
(6) )\nJrl = >\n + ()\nﬂn72)% - ﬁn72~
Table 3.2

Remark 3.6.

(i) According to Table 3.2, for cases (1)~(4), Any1 depends only on two preceding
terms, A, and \,—1. However, in (5) and (6), Apy1 depends on all of its preceding
terms A, -+, An.

(ii) From Lemma 8.4 and Theorem 3.5, in addition to the mazimum eigenvalue
we can obtain a complete set of eigenvalues of T, explicitly.

(iii) In Theorem 3.5, polynomial Q(§) given in (3.25) or (3.27) is the limiting
equation for /\7’?. It is interesting to know is there any limiting equation for general
T,.

Remark 3.7. Similar to the concept in Theorem 3.5, if To does not satisfy (3.19)
and (3.20), another special structure can allow us to obtain explicit recursion for-
mulas of A, and compute its spatial entropy h(Ts) explicitly.

3.3. 2¢ x 2¢ Systems. The results in last two subsections can be generalized to p-
symbols on Zioyx 9. Given a basic set B C Yoyxo¢, horizontal and vertical transition
matrices Hy = [Rji,]g2xq2 and Vo = [v5,5,]42x 42, Where ¢ = p¥, can be defined
according the rules (3.2) and (3.3) by replacing Yoxo with Yopyos, respectively.
Then the transition matrix Ty (B) for B can be defined by

1% Va VY
Vi Viio A VA
T, = To(B) = ’ ’ . . (3.47)

V(qfl)qul V(qfl)q+2 e Vg
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where
'Um,l Um,2 e Um,q
L I (3.48)
Um,(g—1)g+1 VUm,(g—1)g+2 *°° Um,qg?

1 < m < ¢ The higher order transition matrix T,, = [v, j,...;,] for B defined on
Zoosne is & ¢ X ¢" matrix, where vj, ;,...5, is given by (3.5) which are either 1 or
0, by substituting y;,...;, by vj,...;, in X,,, see (2.36)~(2.38). For completeness, we
state the following theorem for T,, and omit the proof for brevity.

Theorem 3.8. Let Ty be a transition matriz given by (3.47) and (3.48). Then for
higher order transition matrices Ty, n > 3, we have the following three equivalent
expressions

(I) T,, can be decomposed into n successive q X q matrices as follows:

Tha s Ty
Tn;q+1 T Tn;2q
T, = . .

Tn;(qfl)q+1 o Tyge
Tijy e gl o Ty g
Tosjy o gmoatt = Tagjie ji2g

Tosjrooj = : :
Tosjr o ira=Da+1 Doy ng?
for1<k<n-—2and
U1, dn—1,1 U1, dn—1,q
Vj1,+ jn—1,q+1 T Uy ino1,2g
Toijiejoon = .
Uji, o gn-1,(g=1)g+1 " Uji v jn_1,q2
Furthermore,
'Uk,lTn—l;l t Uk,an—l;q
Vk,g+1Tn—150+1 o Uk2qTh—1524
Tn;k = . .
Vk(q-1)g+1Tn—1;(g-1)g+1 "+ Vkg2Tn—1;¢
(IT) Starting from
Ty T,

| e

Tg-ygtr - T
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with
Uk:)l .« .. vk)q
Vk,q+1 ot Uk2q
Tk == . . )
L Yk,(¢—1)g+1 ~°°  Uk,q?

T,, can be obtained from T,_1 by replacing Ty by T) ® To according to

v 1T e Ty
Vk,g+1Tg+1 s UkaqTag
Tpy—T1T, 0Ty = . .
L Uk (q-1)q+1T(g-1)g+1 1 Uk T2

(I11)
Tn - (Tn_l)qn—l an—l @ (Eqn—Q ® TQ).
For the spatial entropy h(B), we have a similar result as in Theorem 3.3.

Theorem 3.9. Given a basic set B C Xy, xm,, let £ be the smallest integer such
that 2¢ > mq and 20 > mq, and let B = Xgpxo0(B). Suppose A be the largest
etgenvalue of the associated transition matrixz T, , which is defined in Theorem 3.8.
Then

h(B) =4 lim 22wt

n—oo

Proof.
As in Theorem 3.3,

. lOgFmang(g)
h(B) = lim mxntl®)
(B) mﬂllIEoo mé x nl

1 1 "B
= — lim —( lim —ZOQ#( w(B))
f2 n—oo 1N, MmMm—oo m
1 log\"; !
= g Jm (lim o)
1 . loghny
= — lim

{2 n—c0 n

)

The proof is complete. [ ]

3.4. Relation with Matrix Shifts. Under many circumstances, we are given a
pair of horizontal transition matrix H = (h;j)pxp and vertical transition matrix
V' = (vij)pxp, where h;; and v;; € {0,1}, e.g. [13, 29, 30, 32]. Now, the set of all
admissible patterns which can be generated by H and V on Z,,, xm, and Z? are
denoted by X, xm, (H; V) and 3(H; V), respectively. Furthermore, Xy, sm, (H; V)
and 3(H; V) can be characterized by

Sixme (H; V) ={U € Zppyxmap Puguoye, =1 and vygu,,,, =1,

where e = (1,0), e2 = (0,1), a = (a1,a2), 8= (51,02) (3.49)
withl1<a;<mp—1,1<as<mgand1 < B <m; 1< By <my—1}



PATTERNS GENERATION AND TRANSITION MATRICES 21

and
E(H;V)z{UGE%:h

=1 and Vugugye, = 1

for all o, 3 € Z*}.

In literature, ¥(H; V) is often called Matrix shift, Markov shift or subshift of finite
types, e.g. [13, 30, 32, 38]

As before, we are concerned about constructing X, xm, (H; V). We first show
that the established theories can be applied to answer this question. Indeed, we
introduce § = {0,1,2,--- ,p—1}. On Zsys, consider local pattern U = (uq,q,) With
Uayas € S. Define the ordering matrices Xo = [4,i,]p2xp2 and Yo = [y, 5, ]p2xp2
for Yo o. Now, the basic set B(H;V) determined by H and V can be expressed as

B(H7 V) = {U = (uala2) € Yoxa: hu11u21hu12u2gvu11ulzvu21u22 = 1} (351)

Therefore, the transition matrix T = To(H; V) can be expressed as To =[t;, ,]
with t;,;, = 1 if and only if y;,;, € B(H;V), i.e., t;;;, = 1 if and only if

UaUater

(3.50)

p? xp?

Py sy Pusyums Vi uas Vusyugs = 1 (3.52)

where j; is related to ug,q, according to (2.12) similarly.
Now, T,, = T,,(H; V) can be constructed recursively from Ty (H; V') by Theorem
3.8. Then )\, and spatial entropy h(H;V) can be studied by Theorem 3.9. It is

easy to verify T, (H;V) = Tg)‘,, the transition matrix obtained by Juang et al

in [30]. Furthermore, T;Inz, in [30] can also be obtained by deleting the rows and
columns formed by zeros in T, (H; V).

On the other hand, given a basic set B C Xaxop (0r Xgixa1,p), in general there
is no horizontal transition matrix H = (hsj)pxp and vertical transition matrix
V' = (vij)pxp such that B = B(H;V) given by (3.51). Indeed, the number of

subsets of Mgy, is 2" and the number of B(H;V) is at most 220" and 220° < 27"
for any p > 2. However, as mentioned in p.468[38], one can recode any shift of
finite type to a matrix subshift.

Notably, the n-th order transition matrix T, (B) is a ¢" X ¢" matrix with ¢ = pez
and the n-th order transition matrix T,,(H (B); V(B))) generated by T2 (H (B); V(B)))
is a m™ x m™ matrix. Consequently, if m = #B is relatively small compared with
q = p°, we may study the eigenvalue problems of T, (H(B);V(B)). It is clear,
small m generates less admissible patterns and then smaller entropy. For B with
positive entropy h(B) as in Table 3.1, #B is much larger than ¢ = 2. Therefore, in
general working on T, (B) is better than on T, (H(B); V(B))).
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